ELIOTT

Volume	2:	PROGRAMMING INFORMATION
Part	2:	PROGRAM DESCRIPTIONS
Section	13:	QATAN (B. 10)

Contents

Chapter	1:	DESC	CRIPTION	Ň
		1.1	Introduc	ction
			1. 1. 1	Purpose 1
		ž.	1.1.2	Form of Distribution 1
			1.1.3	Method of Use 1
			1.1.4	Accuracy 1
		1.2	Function	ns
			1. 2. 1	Notation 1
			1.2.2	Number Type 1
			1.2.3	Entry and Exit 2
			1.2.4	Identifiers 2
		1.3	Error I	ndications 2
		1.4	Method	Used 2
		1.5	Time Ta	aken
		1.6	Store U	sed

Page

903 2.2.13.

Chapter 1: DESCRIPTION

1.1 INTRODUCTION.

1.1.1 Purpose.

To calculate

where
$$1 \le x \le 1$$

 $-1 \le x \le 1$
 $-1 \le y \le 1$

1.1.2 Form of Distribution.

The program is distributed as a machine-code tape for input by SIR or by T2.

1.1.3 Method of Use.

The routine is assembled as a sub-routine of the user's program and used as a sub-routine. It can be run at any program level and in any store module.

1.1.4 Accuracy.

The maximum error is 2^{-15} (-.00003).

1.2 FUNCTIONS.

1.2.1 Notation.

x, y, t are as defined in 1. 1. 1.

1.2.2 Number Type.

All numbers must be treated by the programmer as pure fractions. To enable this to be done QATAN calculates

 $(1/\pi) \tan^{-1}(x/y)$

Note, therefore, that on exit the accumulator holds the value of an angle as a fraction of π radians (180°).

903 2. 2. 13.

1.2.3 Entry and Exit.

(for assembly by SIR.)

(for translation by T2.)

89;N

90;N

0;N

1;N

Entry:place x in QATAN+89 " y in QATAN+90 "link in QATAN jump to QATAN+1

(where N is the number of the block)

Exit: the result is in the accumulator

x and y are not affected.

1.2.4 Identifiers.

QATAN must be declared as a global identifier in all blocks of a SIR program which refer to it.

On the library tape a mnemonic label and identifier list are separated from the coding by several inches of blank tape: the mnemonics must not be loaded into the tape reader if the tape is to be translated by T2.

1. 3 ERROR INDICATIONS.

If x=y=0 blank tape is output continuously.

1.4 METHOD USED.

a) The program computes

a = $\begin{cases} |x/y| & \text{if } |x/y| < 1 \\ |y/x| & \text{if } |x/y| \ge 1 \end{cases}$

and applies the transformation

$$Z = \frac{a - (\sqrt{2} - 1)}{(3 - 2\sqrt{2}) a + (\sqrt{2} - 1)}$$

Note | Z | < 1

b)
$$S = 1/\pi \tan (\sqrt{2} - 1)Z$$

is calculated by a Chebyshev series.

c) The final result is found by forming

$$u = (1/\pi) \tan^{-1} |x/y| = \frac{1}{8} + S \text{ if } |x/y| < 1$$

 $\frac{1}{2} - (\frac{1}{8} + S) \text{ if } |x/y| \ge 1$

and the value found according to the table below:

	y≥0	y<0
$x/y \ge 0$	u	u - 1
x/y < 0	- u	l - u

1.5 TIME TAKEN.

The time taken depends on the values of x/y and of y.

The maximum time is about 3.2 milliseconds.

1.6 STORE USED.

128 consecutive store locations and the appropriate B-

register.

)